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Abstract—A connection is emphasized between two branches
of the Systems Theory, namely the Geometric Approach and 2D
Systems, with a special regard to the concept of observability. An
algorithm is provided which determines the maximal subspace
which is invariant with respect to two commutative matrices
and which is included in a given subspace. Observability criteria
are obtained for a class of 2D systems by using a suitable 2D
observability Gramian and some such criteria are derived for
LTI 2D systems, as well as the geometric characterization of
the subspace of unobservable states. The presented algorithm is
applied to determine this subspace.

Index Terms—2D hybrid linear systems, observability, invari-
ant subspace, geometric approach.

1. INTRODUCTION

Observability is a fundamental concept in Systems Theory
which refers to the ability to estimate the state variable from
the observation of the output determined by any control. The
theory of controllability and observability has been developed
in response to problems generated by technological sciences,
especially in areas related to control, communication and
computers. For ”classical” 1D systems the observability theory
was developed by Kalman [9,10], Gilbert [6], Weiss [18] etc.

In recent years the theory of two-dimensional (2D) systems
became a distinct and important branch of Systems and
Control Theory, due to the richness in its potential applications
in various areas as digital image processing, seismic signal
processing, gravity and magnetic field mapping, as well as to
the abundance of non-trivial theoretical approaches. Givone
and Roesser [7] [17] or Fornasini and Marchesini [4] intro-
duced the notions of controllability and observability for their
2D models, as natural generalizations of the 1-D case. But their
definitions referred to local notions which were not closely re-
lated to minimality or to canonical decomposition. Alternative
definitions of modal controllability and observability based on
coprimeness notions were presented in [11]; these definitions
are connected to minimality.

The Geometric Approach is a trend in Systems and Control
Theory developed to realize a better and neater investigation
of the structural properties of the linear dynamical systems
and to provide elegant solutions of problems of controller
synthesis such as decoupling and pole-assignment problems

for linear time-invariant multivariable systems. The Geometric
Approach leads to a very clear geometric conditions for
controllability, reachability, observability, constructibility and
minimality of linear systems. The cornerstone of this approach
is the concept of invariance of a subspace with respect to a
linear transformation.

The history of the Geometric Approach starts in 1969 when
Basile and Marro [2] introduced and studied the basic geomet-
ric tools called controlled and conditioned invariant subspaces
which were applied to disturbance rejection or unknown-input
observability and later on to the robust controlled invariant
and the emphasis of the duality [3], [13]. Wonham’s book
[19] imposed the name of ”(A,B)-invariant” instead of ”(A,B)-
controlled invariant”. The LQ problem was also studied in a
geometric framework by Silverman, Hautus, Willems. Further
contributions are due to numerous researchers among which
Anderson, Akashi, Bhattacharyya, Kucera, Malabre, Molinari,
Pearson, Francis and Schumacher.

The aim of this paper is to emphasize the possible inter-
actions between the two directions of the Systems Theory,
concerning the observability of a class of 2D hybrid linear
systems, which is the continuous-discrete counterpart of At-
tasi’s discrete 2D model [1] .

Such systems appear in various problems like the iterative
learning control synthesis [12] or repetitive processes [5].
For Roesser or Fornasini - Marchesini models, corresponding
hybrid systems were studied by Kaczorek [8].

The advantage of the considered class of 2D systems, stud-
ied by Prepeliţă et al. in [14], [15] and [16], is the possibility
to keep the global character of the natural generalizations of
the concepts of observability and controllability, which remain
related to minimality and state decomposition.

This paper provides in Section 2 an algorithm which deter-
mines the maximal subspace which is invariant with respect to
two commutative matrices and included in a given subspace.

The state space representation of the considered class of
systems is given in Section 3 and the state and output formulæ
for these systems are deduced.

Section 4 is devoted to the study of the observability of
2D time varying systems. This property is characterized by
means of a suitable 2D observability Gramian. For completely
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observable systems a formula is derived which provides the
initial state by knowing the control and corresponding output.

Section 5 studies the time-invariant 2D systems and a list of
observability criteria is established. A geometric characteriza-
tion of the subspace of unobservable states is given in terms of
invariant subspaces included in the kernel of the output matrix.

In Section 6 the algorithm presented in Section 2 is used to
determine the subspace of unobservable states. A MATLAB
Program and an example illustrate the proposed algorithm.

2. MAXIMAL INVARIANT SUBSPACES WITH RESPECT TO
TWO COMMUTATIVE MATRICES

Let K be a field and A1, A2 ∈ Kn×n commutative matrices.
Definition 2.1: A subspace V of Kn is said to be (A1, A2)-

invariant if

∀v ∈ V, A1v ∈ V and A2v ∈ V. (2.1)

Let C be a proper subspace of Kn. The sum of the
(A1, A2)-invariant subspaces included in C is called the max-
imal (A1, A2)-invariant subspace included in C. We denote it
maxI(A1, A2; C).

For a subspace V of Kn, we consider the subspaces
A−k

1 A−l
2 V = {v ∈ Kn|Ak

1A
l
2v ∈ V}, k, l ∈ N, A−0

1 A−0
2 V =

V . If v ∈ A−j
i V , then Aiv ∈ A

−(j−1)
i V, i = 1, 2, ∀j ≥ 0.

Proposition 2.1: The maximal (A1, A2)-invariant subspace
included in C is

maxI(A1, A2; C) =
∞∩
i=0

∞∩
j=0

A−i
1 A−j

2 C. (2.2)

Proof: Let us denote by U the subspace∩∞
i=0

∩∞
j=0 A

−i
1 A−j

2 C. If v ∈ U then v ∈ A−i
1 A−j

2 C, ∀i, j ∈ N

and also v ∈ A
−(i+1)
1 A−j

2 C and v ∈ A−i
1 A

−(j+1)
2 C. It results

that A1v ∈ A−i
1 A−j

2 C and A2v ∈ A−i
1 A−j

2 C, ∀i, j ∈ N,
hence A1v ∈ U and A2v ∈ U i.e. is (A1, A2)-invariant. We
can write by (2.2) U = C ∩ (

∩∞
i=0

∩∞
j=0 A

−i
1 A−j

2 C) where
(i, j) ̸= (0, 0), hence U is included in C.

Now, let V be an (A1, A2)-invariant subspace included in
C. Then, for any v ∈ V , Ai

1A
j
2v ∈ V ⊂ C, ∀i, j ∈ N, hence

v ∈ A−i
1 A−j

2 C, ∀i, j ∈ N, which implies v ∈ U . Therefore
V ⊂ U , i.e. U =

∩∞
i=0

∩∞
j=0 A

−i
1 A−j

2 C is the maximal such
subspace.

Proposition 2.2: The maximal (A1, A2)-invariant subspace
included in C is

maxI(A1, A2; C) =
n−1∩
i=0

n−1∩
j=0

A−i
1 A−j

2 C. (2.3)

Proof: Let us denote by V the subspace in the right-hand
member of (2.3). Obviously, by Proposition 2.1, U ⊂ V , where
U =

∩∞
i=0

∩∞
j=0 A

−i
1 A−j

2 C = maxI(A1, A2; C).
Now, for any v ∈ V , A1A

j
2v ∈ C,∀i, j ∈ N, i, j ≤ n − 1.

Let pk(s) = det(sI−Ak) = sn+an−1,ks
n−1+ · · ·+a1,ks+

a0,k, k = 1, 2 be the characteristic polynomial of the matrix
Ak, k = 1, 2. By Hamilton-Cayley Theorem, each matrix
verifies its characteristic equation, hence

An
k = −an−1,kA

n−1
k − · · · − a1,kAk − a0,kI, k = 1, 2. (2.4)

Then, for any vector v ∈ V , An
1 v = −

n−1∑
i=0

ai,kA
i
1v. Since

A1 and A2 are commutative matrices, we can premultiply this

equality by Aj
2 and we obtain An

1A
j
2v = −

n−1∑
i=0

ai,kA
i
1A

j
2v

forall j, 0 ≤ j ≤ n − 1. Since C is a subspace, one obtains
An

1A
j
2v ∈ C. Similarly, by applying recurrently the Hamilton-

Cayley Theorem for both A1 and A2, we get Ai
1A

j
2v ∈

C, ∀i, j ≥ 0, hence v ∈ U . One obtains V ⊂ U , hence
V = U = maxI(A1, A2; C).

The following algorithm determines recurrently the sub-
space maxI(A1, A2; C).

Algorithm 2.1
Stage 1. Construct the sequence of subspaces (S0,j)0≤j≤n

of the space Kn:

S0,0 = C; (2.5)
S0,j = C ∩A−1

2 S0,j−1, j = 1, ..., n; (2.6)

Stage 2. Determine j0, the first index in {0, 1, . . . , n − 1}
which verifies

S0,j0+1 = S0,j0 . (2.7)

If j0 = n− 1, then maxI(A1, A2; C) = {0}. STOP
If j0 < n− 1, GO TO Stage 3.
Stage 3. Construct the sequence of subspaces (Si,j0)0≤i≤n:

Si,j0 = Si−1,j0 ∩A−1
1 Si−1,j0 . (2.8)

Stage 4. Determine i0, the first index in 0, 1, . . . , n−1 which
verifies

Si0+1,j0 = Si0,j0 . (2.9)

Then maxI(A1, A2; C) = Si0,j0 . STOP

Proof: Let us consider the doubly-indexed sequence of
subspaces of the space Kn

S̃i,j =

(
i∩

k=0

A−k
1

)(
j∩

l=0

A−l
2

)
C, i, j ∈ {0, 1, . . . , n}.(2.10)

By Proposition 2.1, maxI(A1, A2; C) ⊆ S̃i,j ∀i, j and by
Proposition 2.2, S̃n−1,n−1 = maxI(A1, A2; C). Obviously

S̃i,j ⊇ S̃k,l, ∀k ≥ i, l ≥ j (2.11)

and S̃0,0 = A−0
1 A−0

2 C = C = S0,0. For any j ∈ {0, 1, . . . , n},
S̃0,j = ∩j

l=0A
−l
2 C = C∩A−1

2

(
∩j−1
l=0A

−l
2 C
)
= C∩A−1

2 S̃0,j−1.

Then, if we assume that S̃0,j−1 = S0,j−1, using (2.6) we
get by induction the following equality:

S̃0,j = S0,j , ∀j ∈ {0, 1, . . . , n}, (2.12)

hence by (2.11)

S0,j ⊇ S0,j+1, ∀j ∈ {0, 1, . . . , n− 1}, (2.13)

Using again Hamilton-Cayley Theorem (see (2.4)) and
(2.13) one obtains S0,n = S̃0,n = S̃0,n−1 = S0,n−1, hence
j0 ≤ n− 1.
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Let us consider the chain of subspaces

{0} ⊆ S0,n = S0,n−1 ⊆ S0,n−2 ⊆ ... ⊆ S0,1 ⊆ S0,0 ⊆ Kn.

Since C is a proper subspace of X = Kn it results that
dim S0,0 = dim C ≤ n − 1. If j0 = n − 1 is the first index
which verifies (2.7), we have

0 ≤ dimS0,n−1 < dimS0,n−2 < · · · < dimS0,0 ≤ n− 1

hence dimS0,n−1 = 0, i.e. S0,n−1 = {0}. Therefore one
obtains by Proposition 2.1 {0} = S0,n−1 = S̃0,n−1 ⊇
maxI(A1, A2; C), hence maxI(A1, A2; C) = {0}.

If j0 < n− 1 one obtains by S0,j0+1 = S0,j0 and by (2.6)
S0,j0+2 = C∩A−1

2 S0,j0+1 = C∩A−1
2 S0,j0 = S0,j0+1 = S0,j0 .

Let us assume that S0,j = S0,j0 for some j ∈ {j0 +1, j0 +
2, . . . , n− 1}. Then, again by (2.6), S0,j+1 = C ∩A−1

2 S0,j =
C ∩A−1

2 S0,j0 = S0,j0+1 = S0,j0 hence

S0,j = S0,j0 , ∀j ∈ {j0 + 1, j0 + 2, . . . , n}. (2.14)

Now, let us assume that S̃i−1,j0 = Si−1,j0 , for some
i ∈ {1, 2, . . . , n− 1}. We use the obvious equality V1 ∩ V2 ∩
V3 = (V1 ∩ V2) ∩ (V2 ∩ V3), where Vk, k = 1, 2, 3 are any
subspaces of Kn. By (2.10) and (2.8) one obtains:
S̃i,j0 = ∩i

k=0 ∩j0
l=0 A−k

1 A−l
2 C = (∩i−1

k=0 ∩j0
l=0 A−k

1 A−l
2 C) ∩

(∩i
k=1 ∩j0

l=0 A−k
1 A−l

2 C) = (∩i−1
k=0 ∩j0

l=0 A−k
1 A−l

2 C) ∩
A−1

1 (∩i−1
k=0 ∩j0

l=0 A−k
1 A−l

2 C) = S̃i−1,j0 ∩ A−1
1 S̃i−1,j0 =

Si−1,j0 ∩ A−1
1 Si−1,j0 = Si,j0 , hence S̃i,j0 = Si,j0 , ∀i ∈

{0, 1, . . . , n}. It follows by (2.11) that Si,j0 ⊇ Si+1,j0 and
by Hamilton-Cayley Theorem that Sn−1,j0 = Sn,j0 .

Now, let us consider the chain of subspaces

{0} ⊆ Sn,j0 = Sn−1,j0 ⊆ Sn−2,j0 ⊆ · · · ⊆ S0,j0 ⊆ Kn.

Since dimS0,j0 ≤ dimS0,0 ≤ n − 1, if i0 = n − 1
we obtain as above that dimSn−1,j0 = 0, hence Sn−1,j0 =
maxI(A1, A2; C) = {0}.

If i0 < n − 1, we have by S̃i0+1,j0 = Si0+1,j0 = Si0,j0 =

S̃i0,j0 and by (2.9) the following equalities: S̃i0+2,j0 =

S̃i0+1,j0 ∩ A−1
1 S̃i0+1,j0 = S̃i0,j0 ∩ A−1

1 S̃i0,j0 = S̃i0+1,j0 =

S̃i0,j0 .
If we assume that S̃i,j0 = S̃i0,j0 for some i ∈ {i0 +

1, i0 + 2, . . . , n − 1}, we get again by (2.9) S̃i+1,j0 =

S̃i,j0 ∩ A−1
1 S̃i,j0 = S̃i0,j0 ∩ A−1

1 S̃i0,j0 = S̃i0+1,j0 = S̃i0,j0 ,
hence

S̃i,j0 = Si0,j0 , ∀i ∈ {i0 + 1, i0 + 2, . . . , n− 1}. (2.15)

Using (2.9), (2.14) and (2.15) we obtain ∩j
l=0A

−l
2 C =

∩j0
l=0A

−l
2 C, ∀j ∈ {j0 + 1, j0 + 2, . . . , n} and ∩i

k=0 ∩j
l=0

A−k
1 A−l

2 C = ∩i
k=0∩

j0
l=0A

−k
1 A−l

2 C ∀i ∈ {i0+1, i0+2, . . . , n}.
Then, ∀i ∈ {i0 + 1, i0 + 2, . . . , n} and ∀j ∈ {j0 +

1, j0 + 2, . . . , n}, one obtains S̃i,j = ∩i
k=0 ∩

j
l=0 A

−k
1 A−l

2 C =

∩i
k=0A

−k
1

(
∩j
l=0A

−l
2 C
)

= ∩i
k=0A

−k
1

(
∩j0
l=0A

−l
2 C
)

=

∩i0
k=0 ∩j0

l=0 A−k
1 A−l

2 C = Si0,j0 , hence S̃i,j = Si0,j0 , ∀i ∈
{i0 + 1, i0 + 2, . . . , n}, ∀j ∈ {j0 + 1, j0 + 2, . . . , n}.

By Proposition 2.2, we obtain

maxI(A1, A2; C) = S̃n−1,n−1 = Si0,j0 , (2.16)

which completes the proof of the algorithm.
Given the n×n matrices A1 , A2 and the n×k matrix Cal,

the next Matlab program calculates an orhonormal basis in the
maximal subspace maxI(A1, A2; Cal) and its dimension:

S = ima(Cal, 0); [n, dimInv] = size(S);
for i= 2:n S= ints(S, invt(A2, S));
[n, m1] = size(S);if m1==dimInv break
else dimInv = m1; end
end
for j= 2:n S= ints(S, invt(A1,S));
[n, m1] = size(S);if dimInv==m1 break
else dimInv = m1; end
end
disp(’maxI(A1, A2;Cal) has the dim =’)
disp( num2str(dimInv))
disp([’and an orthonormal basis for’...
’ maxI(A1, A2;Cal) is:’]), disp(S)

This program will be furher adapted for the algorithm in
the last section and a concrete example will be given there.

From (2.10), (2.16) and S̃i0,j0 = Si0,j0 one obtains:
Proposition 2.3: The maximal (A1, A2)-invariant subspace

included in the subspace C is

maxI(A1, A2; C) = S̃i0,j0 =

i0∩
i=0

j0∩
j=0

A−i
1 A−j

2 C. (2.17)

3. THE STATE SPACE REPRESENTATION OF THE 2D HYBRID
SYSTEMS

The linear spaces X = Rn, U = Rm and Y = Rp, are
called respectively the state, input and output spaces and T =
R × Z is the time set. By (s, l) ≤ (t, k) for (s, l), (t, k) ∈ T
we mean s ≤ t, l ≤ k and (s, l) < (t, k) means (s, l) ≤ (t, k)
and (s, l) ̸= (t, k).

Definition 3.1: A two-dimensional hybrid (continuous-
discrete) linear system (2Dcd) is a quintuplet
Σ = (A1(t, k), A2(t, k), B(t, k), C(t, k), D(t, k)) ∈

Rn×n × Rn×n × Rn×m × Rp×n × Rp×m with
A1(t, k)A2(t, k) = A2(t, k)A1(t, k) ∀(t, k) ∈ T , where all
matrices are continuous with respect to t ∈ R for any k ∈ Z;
the state space representation of Σ is given by the following
state and output equations (where ẋ(t, k) = ∂x

∂t (t, k)).

ẋ(t,k+1)=A1(t,k+1)x(t,k+1)+A2(t,k)ẋ(t,k)

−A1(t, k)A2(t, k)x(t, k) +B(t, k)u(t, k) (3.1)
y(t, k) = C(t, k)x(t, k) +D(t, k)u(t, k). (3.2)

The vectors x(t, k) ∈ X , u(t, k) ∈ U and y(t, k) ∈ Y are
respectively the state, the input and the output of the system
Σ at the moment (t, k) ∈ T .

We denote by Φ(t, t0; k) or ΦA1(t, t0; k) the continuous
fundamental matrix of A1(t, k) with respect to t ∈ R, for
any fixed k ∈ Z. Φ(t, t0; k) has the following properties, for
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any t, t0, t1 ∈ R:

i) d
dt
Φ(t, t0; k) = A1(t, k)Φ(t, t0; k),

ii) Φ(t0, t0; k) = In,

iii) Φ(t, t1; k)Φ(t1, t0; k) = Φ(t, t0; k),

iv) Φ(t, t0; k)
−1 = Φ(t0, t; k),

.

v)Φ(t, t0; k)=I+
∞∑
l=1

∫ t

t0

A1(s1, k)

∫ s1

t0

A1(s2, k)· · ·

· · ·
∫ sl−1

t0

A1(sl, k)dsldsl−1· · ·ds2ds1.

.
If A1 is a constant matrix, then Φ(t, t0; k) =∑∞
l=0

Al
1(t−t0)

l

l! = eA1(t−t0).
We denote by F (t; k, k0) the discrete fundamental matrix

of the matrix A2(t, k), defined by
F (t; k, k0) =

=

{
A2(t,k−1)A2(t,k−2) · · ·A2(t,k0) for k > k0

In for k = k0

for any fixed t ∈ R.
If A2 is a constant matrix, then F (t; k, k0) = Ak−k0

2 .
The matrices Φ(t, t0; k) and F (s; l, l0) commute for any

t, t0, s ∈ R and k, l, l0 ∈ Z since A1(t, k) and A2(t, k) are
commutative matrices.

Definition 3.2: A vector x0 ∈ X is called the initial state
of Σ at the moment (t0, k0) ∈ T if, for any (t, k) ∈ T with
(t, k) ≥ (t0, k0) the following conditions hold:

x(t,k0)=Φ(t, t0;k0)x0, x(t0,k)=F (t0; k,k0)x0. (3.3)

For (t0, k0) ≤ (t, k) we denote by [t0, t; k0, k] the set
[t0, t; k0, k] = [t0, t]× {k0, k0 + 1, . . . , k}.

From [15, Proposition 2.3] we obtain:
Proposition 3.1: The state of the system Σ at the moment

(t, k) ∈ T determined by the control u(·, ·) : [t0, t; k0, k] → U
and by the initial state x0 ∈ X is

x(t,k)=Φ(t,t0;k)F (t0;k,k0)x0+∫ t

t0

k−1∑
l=k0

Φ(t, s; k)F (s; k, l + 1)B(s, l)u(s, l)ds. (3.4)

By replacing the state x(t, k) given by (3.4) in the output
equation (3.2) we get

Proposition 3.2: The input-output map of the system Σ is
given by the formula

y(t, k) = C(t, k)Φ(t, t0; k)F (t0; k, k0)x0 +

+

∫ t

t0

k−1∑
l=k0

C(t, k)Φ(t, s; k)F (s; k, l + 1)B(s, l)u(s,l)ds+

+D(t,k)u(t,k).(3.5)

4. OBSERVABILITY OF TIME-VARYING 2D SYSTEMS

In this section we present the study of the
observability of the time-varying system Σ =
(A1(t, k), A2(t, k), B(t, k), C(t, k), D(t, k)), along the
line of [16].

A triplet (t, k, x̃) ∈ T × X is called a phase of Σ if x̃ =
x(t, k) (i.e. x̃ is the state of Σ at the moment (t, k)). One
obtains by (3.4) that (t, k, x̃) is a phase of Σ iff there exist a
control u(·, ·) and an initial state x0 ∈ X such that

x̃ = Φ(t, t0; k)F (t0; k, k0)x0+

+

∫ t

t0

k−1∑
l=k0

Φ(t, s : k)F (s; k, l + 1)B(s, l)u(s, l)ds. (4.1)

We denote by I the set I = [t0, t] × [k0, k] ⊂ T , where
(t0, k0), (t, k) ∈ T and (t0, k0) < (t, k) .

Definition 4.1: A phase (t0, k0, x) is said to be unobservable
(unobservable on I) if for any control u(·, ·) it provides the
same output y(s, l) for (s, l) ≥ (t0, k0) (for (s, l) ∈ I) as the
phase (t0, k0, 0).

A state x ∈ X is said to be unobservable (unobservable on
I) if there exists (t0, k0) ∈ T such that the phase (t0, k0, x)
is unobservable (unobservable on I).

Proposition 4.1: The phase (t0, k0, x) is unobservable if
and only if

C(t, k)Φ(t, t0; k)F (t0; k, k0)x = 0 (4.2)

for any (t, k) ∈ T, (t, k) ≥ (t0, k0).
The phase (t0, k0, x) is unobservable on I if and only if

C(s, l)Φ(s, t0; l)F (t0; l, k0)x = 0 (4.3)

for any (s, l) ∈ I .

Proof: The output produced by the initial state x given by
(3.5) is denoted yx(t, k). If we replace x0 by 0 in (3.5) we
get the zero-input response of Σ

y0(t, k) =

∫ t

t0

k−1∑
l=k0

C(t, k)Φ(t, s : k)F (s; k, l + 1)B(s, l) ·

·u(s, l)ds+D(t, k)u(t, k).

By equalizing yx(t, k) and y0(t, k) we get (4.2) ((4.3) if it
is restricted to the interval I).

It results from (4.2) that the property of observability does
not involve the matrices B(t, k) and D(t, k): therefore in the
sequel we shall often consider the system Σ reduced to the
triplet Σ = (A1(t, k), A2(t, k), C(t, k))

Definition 4.2: The system Σ is said to be completely
observable (completely observable on I) if there is no un-
observable (unobservable on I) state x ̸= 0
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In order to check whether a system Σ is completely observ-
able we introduce the 2D observability Gramian of Σ denoted
by OΣ(t, t0; k, k0)

OΣ(t, t0; k, k0) =

∫ t

t0

k∑
l=k0

F (t0; l, k0)
TΦ(s, t0; l)

T ·

·C(s, l)TC(s, l)Φ(s, t0; l)F (t0; l, k0)ds. (4.4)

It results that OΣ(t, t0; k, k0) is a symmetrical, positive
semidefinite n× n matrix.

Proposition 4.2: The phase (t0, k0, x) (the state x) is
unobservable on I if and only if

OΣ(t, t0; k, k0)x = 0. (4.5)

Proof: Necessity. If the state x is unobservable on I then
(4.3) holds for any (s, l) ∈ I , hence OΣ(t, t0; k, k0)x =∫ t

t0

∑k
l=k0

F (t0; l, k0)
TΦ(s, t0; l)

TC(s, l)TC(s, l)Φ(s, t0; l) ·
· F (t0; l, k0)xds = 0.

Sufficiency. If (4.5) holds, then xTOΣ(t, t0; k, k0)x =
0, equality which can be written as∫ t

t0

∑k
l=k0

||C(s, l)Φ(s, t0; l)F (t0; l, k0)x||2ds = 0. Since
the integrand is non-negative, one obtains (4.3), hence by
Proposition 4.1 the state x is unobservable on I .

Corollary 4.1: The set of states which are unobservable on
I is the subspace KerOΣ(t, t0; k, k0).

Corollary 4.2: The phase (t0, k0, x) is unobservable
if and only if, for any (t, k) ∈ T, (t, k) ≥ (t0, k0),
OΣ(t, t0; k, k0)x = 0.

Theorem 4.1: The system Σ = (A1(t, k), A2(t, k), C(t, k))
is completely observable on I if and only if

rankOΣ(t, t0; k, k0) = n. (4.6)

Proof: By Corollary 4.1, Σ is completely observable on I
if and only if KerOΣ(t, t0; k, k0) = {0}, condition which is
equivalent to (4.6).

Now it is possible to determine the initial state by knowing
the input and the output of Σ.

Theorem 4.2: Let Σ be completely observable on I . If the
control u(s, l) produces the output y(s, l), (s, l) ∈ I , then the
initial state x0 is given by

x0 = OΣ(t, t0; k, k0)
−1

∫ t

t0

k∑
l=k0

F (t0; l, k0)
T ·

·Φ(s, t0; l)TC(s, l)T ỹ(s, l)ds (4.7)

where

ỹ(s, l) = y(s, l)−
∫ s

t0

l−1∑
λ=k0

C(s, l)Φ(s, τ ; l)·

·F (τ ; l, λ+ 1)B(τ, λ)u(τ, λ)dτ −D(s, l)u(s, l). (4.8)

Proof: From (3.5) and (4.8) we obtain
C(s, l)Φ(s, t0; l)F (t0; l, k0)x0 = ỹ(s, l). If we premultiply
this equality by F (t0; l, k0)

TΦ(s, t0; l)
TC(s, l)T , then we

integrate on [t0, t] and we sum up for l = k0, k, we get

OΣ(t, t0; k, k0)x0 =

∫ t

t0

k∑
l=k0

F (t0; l, k0)
T ·

·Φ(s, t0; l)TC(s, l)T ỹ(s, l)ds (4.9)

Since Σ is completely observable on I , by Theorem 4.1
the matrix OΣ(t, t0; k, k0) is nonsingular and (4.7) results by
premultiplying (4.9) by its inverse.

Remark 4.1: By replacing x0 given by (4.7) into (3.4)
one can conclude that completely observable systems allow
the reconstitution of the whole trajectory of the system Σ
x(t, k), (t, k) ∈ T, (t, k) ≥ (t0, k0).

5. OBSERVABILITY OF TIME-INVARIANT HYBRID SYSTEMS

The system Σ given by Definition 3.1 is said to be time-
invariant (or stationnary) if A1, A2, B, C,D are constant
matrices. In this case we can consider the initial moment
(t0, k0) = (0, 0).

Since for constant matrices A1 and A2 the two fundamental
matrices become Φ(t, s; 0) = eA1(t−s) and F (0; k, l) =
Ak−l

2 , (t, k), (s, l) ∈ T+ := R+ × Z+, (t, k) ≥ (s, l), the
input-output map (3.5) can be written in the form

y(t, k) = CeA1tAk
2x0 +

∫ t

0

k−1∑
l=0

CeA1(t−s)Ak−l−1
2 ·

·Bu(s, l)ds+Du(t, k). (5.1)

Definition 5.1: Two time-invariant systems
Σ = (A1, A2, B, C,D) and Σ̃ = (Ã1, Ã2, B̃, C̃, D̃) are
said to be isomorphic if there exists a nonsingular matrix
T ∈ Rn×n such that

Ãi = T−1AiT, i = 1, 2; B̃ = T−1B; C̃ = CT ; D̃ = D.

These relations are the consequence of the change of basis
x = T x̃ in the state space X = Rn. Since eÃ1t = T−1eA1tT
and Ãk

2 = T−1Ak
2T , if we write the input-output maps of both

systems Σ and Σ̃ we get

Proposition 5.1: Two isomorphic systems have the same
input-output map.

In the case of time-invariant systems, the observability
Gramian (denoted by O(t, k) instead of OΣ(t, t0; k, k0)) be-
comes

O(t, k) =

∫ t

0

k∑
l=0

(AT
2 )

leA
T
1 sCTCeA1sAl

2ds

and Proposition 4.1 and Theorem 4.1 can be restated as
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Proposition 5.2: The state x ∈ X is unobservable if and
only if

CeA1tAk
2x = 0 (5.2)

for any (t, k) ∈ T+.

Theorem 5.1: The system Σ = (A1, A2, C) is completely
observable if and only if

rankO(t, k) = n

for any (t, k) ∈ T+.

Definition 5.2: The matrix

OΣ = [CT AT
1 C

T ... (AT
1 )

n−1CT AT
2 C

T AT
1 A

T
2 C

T ...

... (AT
1 )

n−1AT
2 C

T ...

(AT
2 )

n−1CT AT
1 (A

T
2 )

n−1CT ... (AT
1 )

n−1(AT
2 )

n−1CT ]T .

is called the observability matrix of the system Σ.

Theorem 5.2: The system Σ = (A1, A2, C) is completely
observable if and only if

rankOΣ = n. (5.3)

Proof: Necessity. Let us assume that (5.3) fails, i.e.
rankOΣ < n. Then there exists x ∈ X \{0}, such that OΣx =
0. Then Cx = 0, CA1x = 0, . . . , CAn−1

1 An−1
2 x = 0. By

Hamilton-Cayley Theorem applied to A1 and A2 respectively
(see ]2.4]), it results that CAl

1A
k
2x = 0 for any l, k ∈ N. Then

CeA1tAk
2x = C(

∑∞
l=0

Al
1t

l

l! )Ak
2x =

∑∞
l=0

tl

l!CAl
1A

k
2x = 0.

By Proposition 5.2 x is unobservable, hence Σ is not com-
pletely observable.

Sufficiency. Let us suppose that Σ is not completely observ-
able. By Proposition 5.2 there exists x ∈ X \ {0} such that
CeA1tAk

2x = 0 for any (t, k) ∈ T+. By deriving successively
this equality with respect to t and by taking t = 0 we get
CAk

2x = 0, CA1A
k
2x = 0, . . . , CAl

1A
k
2x = 0, . . . , l, k ∈ N;

this implies OΣx = 0, hence rankOΣ < n.

The proof of Theorem 5.2 suggests the following result:

Theorem 5.3: The system Σ = (A1, A2, C) is completely
observable if and only if CeA1sAl

2x = 0, ∀(s, l) ∈ [0, t] ×
[0, k] ⊂ T+ for some (t, k) ∈ T+ implies x = 0.

The following statement results from Theorem 5.2 and [15,
Theorem 4.2], by noticing that the 2D observability matrix OΣ

of the system Σ = (A1, A2, B, C,D) coincides with the 2D
controllability matrix CΣ∗ of Σ∗ = (AT

1 , A
T
2 , C

T , BT , DT ).
We say that the system Σ∗ is the dual of Σ.

Theorem 5.4: The system Σ = (A1, A2, B, C,D) is
completely observable if and only if its dual Σ∗ =
(AT

1 , A
T
2 , C

T , BT , DT ) is completely reachable.

Now we can give a characterization of the set of unobserv-
able states, denoted by Xuo.

Proposition 5.3: The set Xuo of all unobservable states of
Σ is the maximal (A1, A2)−invariant subspace of X which is
contained in KerC.

Proof: From the proof of Theorem 5.2 one can derive that
Xuo is the subspace Xuo = {x ∈ X|CAl

1A
k
2x = 0, ∀l, k ∈

N}. Obviously, if x ∈ Xuo then l = k = 0 implies
x ∈ KerC; moreover A1x ∈ Xuo since CAl

1A
k
2(A1x) =

CAl+1
1 Ak

2x = 0, ∀l, k ∈ N. Similarly A2x ∈ Xuo hence Xuo

is (A1, A2)−invariant and it is contained in KerC.
Now, let V be an (A1, A2)−invariant subspace of X con-

tained in KerC. Let x be an element of V . Since V ⊂
KerC,Cx = 0. V being (A1, A2)−invariant we get A1x ∈ V
and A2x ∈ V and by recurrence Al

1A
k
2x ∈ V ⊂ KerC, hence

CAl
1A

k
2x = 0, ∀l, k ∈ N, that is x ∈ Xuo. Therefore V ⊂ Xuo

and Xuo is the maximal such subspace of X .

By using Hamilton-Cayley Theorem for A1 and A2

(see[2.4]), we obtain Xuo = {x ∈ X | CAl
1A

k
2x = 0, ∀l, k =

0, n− 1} = KerOΣ. We proved:

Corollary 5.1: The set of all unobservable states of Σ is
Xuo = KerOΣ.

We obtain from Proposition 5.3:

Theorem 5.5: The system Σ = (A1, A2, C) is completely
observable if and only if {0} is the greatest subspace of X
which is (A1, A2)−invariant and is contained in KerC.

The next result gives the canonical form of unobservable
systems, byusing the geometric characterization of Xuo.

Theorem 5.6: The system Σ = (A1, A2, C) is not com-
pletely observable if and only if it is isomorphic to a system
Σ̃ = (Ã1, Ã2, C̃) with

Ãi =

[
A11i 0
A21i A22i

]
, i = 1, 2, C̃ =

[
C1 0

]
, (5.4)

where A11i ∈ Rñ×ñ, C1 ∈ Rp×ñ and ñ < n. The triplet
Σ1 = (A111, A112, C1) is completely observable.

Proof: We obtain the direct sum decomposition X = X1 ⊕
X2 where X2 = Xuo ̸= {0} by considering a basis of X2

and by completing it to a basis B of X . We denote by ñ
the dimension of the subspace X1. Since Σ is not completely
observable n− ñ = dimX2 > 0, hence ñ < n.

In the basis B we have X2 =

{
x =

[
0
x2

]
| x2 ∈ Rn−ñ

}
and we denote the corresponding matrices of Σ in this basis
by Ã1, Ã2 and C̃. The transition matrix is denoted by T . Let
us partition the matrix C̃ as C̃ = [ C1 C2 ] where C1 has
ñ columns. By Proposition 5.3 X2 is included in KerC̃; then

for any x2 ∈ Rn−ñ we have [ C1 C2 ]

[
0
x2

]
= 0, i.e.

C2x2 = 0, hence C2 is a null matrix and C̃ =
[
C1 0

]
.

Since by Proposition 5.3 X2 is Ãi-invariant, i = 1, 2,

we have Ãi

[
0
x2

]
∈ X2 for any x2 ∈ Rn−ñ. Then if

we partition Ãi as Ãi =

[
A11i A12i

A21i A22i

]
, i = 1, 2 we
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obtain
[

A12ix2

A22ix2

]
=

[
0

A22ix2

]
hence A12ix2 = 0 for any

x2 ∈ Rn−ñ, i.e. A12i = 0, i = 1, 2. Therefore in the basis B
the system has the form (5.4).

By corollary 4.1 ñ = dimX1 = n − dimX2 =
n − dimKerOΣ = rankOΣ = rankOΣ̃ since OΣ̃ =
OΣT and T is nonsingular. From (5.4) we get C̃Ãk

i =
[ C1A

k
11i 0 ], ∀k ∈ Z+. Then OΣ̃ has the structure OΣ̃ =[

[ C1A
k
11i 0 ]

]
0≤k≤n−1

. By Hamilton-Cayley Theorem, for
any j ∈ N, Añ−1+j

11i is a linear combination of Al
11i, l =

0, ñ− 1, hence

ñ = rankOΣ̃ = rank
[
[ C1A

k
11i 0 ]

]
0≤k≤ñ−1

=

= rank[C1A
k
11i]0≤k≤ñ−1;

But [C1A
k
11i]0≤k≤ñ−1 is the observability matrix OΣ1 of the

system Σ1 = (A111, A112, C1). By Theorem 5.2, rankOΣ1 =
ñ implies the complete observability of Σ1.

This Theorem can be restated as

Theorem 5.7: The system Σ = (A1, A2, C) is completely
observable if and only if it is not isomorphic to a system of
the form (5.4).

Theorem 5.8: The system Σ = (A1, A2, C) is completely
observable if and only if there is no common eigenvector of
the matrices A1 and A2 belonging to KerC.

Proof: Necessity. Let us assume that ∃x ∈ Rn \ {0} such
that A1x = λ1x,A2x = λ2x for some λ1, λ2 ∈ C and Cx =
0. Then CAi

1A
j
2x = λi

1λ
j
2Cx = 0 for any i, j ≥ 0; we get

OΣx = 0, hence rankOΣ < n and by Theorem 5.2 Σ is not
completely observable.

Sufficiency. Let us assume that Σ is not completely observ-
able. We denote by S1 the subspace of Rn S1 = KerOΣ.
Since rankOΣ < n, ∃x ∈ Rn \ {0} such that OΣx = 0,
hence S1 contains nonzero vectors. For any x ∈ S1 we
get CAi

1A
j
2x = 0, i, j = 0, n− 1 and by Hamilton-Cayley

Theorem, applied to matrices A1 and A2, this equality is true
∀i, j ≥ 0, hence S1 = {v ∈ Rn|CAi

1A
j
2x = 0,∀i, j ≥ 0}.

We can prove that S1 is (A1, A2)-invariant. Indeed, if
x ∈ S1, then for any i, j ∈ N we have CAi

1A
j
2(A1x) =

CAi+1
1 Aj

2x = 0, hence A1x ∈ S1 and analogously A2x ∈ S1.
Since S1 is a proper A1-invariant subspace of Rn it contains
an eigenvector x1 of A1; let λ be the corresponding eigenvalue
of A1. Let S2 be the subspace S2 = {v ∈ Rn|A1v = λv};
obviously 0 ̸= x1 ∈ S2. S2 is A2-invariant since x ∈ S2

implies A1(A2x) = A2(A1x) = λ(A2x), hence the subspace
S3 := S1∩S2 is A2-invariant and contains the nonzero vector
x1. It results that S3 contains an eigenvector x2 of A2 which
is also an eigenvector of A1 since S3 ⊂ S2. This eigenvector
belongs to KerOΣ since x2 ∈ S3 ⊂ S1 implies OΣx = 0 and
for i = j = 0 we get Cx2 = 0.

A consequence of this Theorem is a Popov-Hautus-
Belevitch type criterion of observability:

Theorem 5.9: The system Σ = (A1, A2, C) is completely
observable if and only if for any s1, s2 ∈ C

rank

 C
s1I −A1

s2I −A2

 = n. (5.5)

Proof: By Theorem 5.8 the statement that Σ is not com-
pletely observable is equivalent to the existence of x ∈ Rn \
{0} with Cx = 0, Aix = λix, i = 1, 2 for some λ1, λ2 ∈ C,
that is such that Cx = 0, (λ1I − A1)x = 0, (λ2I − A2)x =
0, x ̸= 0; this is equivalent to the fact that the matrix in (4.7)
has the rank less than n.

Since rank(siI −Ai) = n ∀si /∈ σ(Ai), Theorem 5.9 can
be restated as

Corollary 5.2: The system Σ = (A1, A2, C) is completely
observable if and only if (5.5) holds for any s1 ∈ σ(A1), s2 ∈
σ(A2).

6. THE DETERMINATION OF THE SUBSPACE OF
UNOBSERVABLE STATES

Let us consider an LTI system Σ = (A1, A2, C) ∈
Rn×n × Rn×n × Rp×n with A1, A2 commutative matrices.
We will adapt Algorithm 1 to determine the subspace Xuo of
unobservable states of the system Σ.

Algorithm 6.1
Stage 1. Determine the observability matrix OΣ.
Stage 2. Compute rankOΣ.
If rankOΣ = n, then Xuo = {0}. STOP
If rankOΣ < n GO TO Stage 3.
Stage 3. Construct the sequence of subspaces

(S0,j)0≤j≤n−2 of the space X = Rn:

S0,0 = KerC; (6.1)

S0,j = KerC
∩

A−1
2 S0,j−1, j = 1, ..., n− 2. (6.2)

Stage 4. Determine j0, the first index in {0, 1, . . . , n − 2}
which verifies

S0,j0+1 = S0,j0 . (6.3)

Stage 5. Construct the sequence of subspaces
(Si,j0)0≤i≤n−2 of the space X = Rn:

Si,j0 = Si−1,j0

∩
A−1

1 Si−1,j0 . (6.4)

Stage 6. Determine i0, the first index in {0, 1, . . . , n − 2}
which verifies

Si0+1,j0 = Si0,j0 . (6.5)

Then Xuo = Si0,j0 . STOP
Proof: By Proposition 5.3, Xuo = maxI(A1, A2; C) where

C = KerC.
If rankOΣ = n, then Σ is completely observable (by

Theorem 5.1), hence Xuo = {0} (and in this case i0 or j0
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would be equal to n− 1). Otherwise, i0 < n− 1, j0 < n− 1
and maxI(A1, A2; C) = Si0,j0 , hence Xuo = Si0,j0 .

The Matlab program presented below and based upon
the algorithm above calculates an orthonormal basis of the
unobservable states subspace and its dimension for the bi-
dimensional case.

The instructions make use of the m-functions ima,
ints and invt included in the Geometric Approach
toolbox published by G. Marro and G. Basile at
http://www3.deis.unibo.it/Staff/FullProf/GiovanniMarro/geo-
metric.htm; this GA toolbox works with Matlab 5, Matlab 6
and Matlab 7 and the Control System Toolbox.

More precisely, given the matrices A1, A2 that commute
and the matrix C, the next commands will compute and
display the dimension and an orthonormal basis in the space
S = maxI(A1, A2;B).

n= length(A1); Osigma=[];
for k = 0: n-1; for l = 0: n-1
Osigma = [Osigma ; C*A2ˆl*A1ˆk]; end
end
r = rank(Osigma);
if (r < n); S = ker(C);
[n, dimInv] = size(S);

for i= 2:n; S = ints(S,invt(A2, S));
[n, m1] = size(S);
if m1 == dimInv break
else dimInv = m1; end

end
for j= 2:n; S = ints(S,invt(A1,S));
[n, m1] = size(S);
if dimInv == m1 break
else dimInv = m1; end

end
disp([’The dimension of the ’...
’unobservable space is ’])
disp([ num2str(dimInv)])
disp(’and an orthonormal basis is:’)
disp(S)
else
disp(’Completely observable system.’)
end

For example, given the matrices

A1 =


3 0 0 0
0 4 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 2 −1
0 0 −2 5

 ,

C =

[
2 0 0 5
−3 0 0 −2

]
,

the above Matlab program gives the answers:

The dimension of the unobservable space
is 1 and an orthonormal basis is:

B = {[0 1 0 0]T }.

7. CONCLUSION

The minimal subspace which is invariant with respect to
some commutative matrices and which is included in a given
subspace is determined by a suitable algorithm. This algorithm
is applied to determine the subspace of the unobservable
states of a hybrid 2D system. The state space representation
of these systems is studied and observability criteria are
obtained. Necessary and sufficient conditions of observability
are derived for LTI 2D systems as well as the characterization
of the unobservable states subspace.

These results and the proposed algorithms can be extended
to (q, r)-D systems with (q, r) > (1, 1), i.e. to hybrid systems
with q continuous-time and r discrete-time variables.
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